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FCHC lattice gases are the basic models for studying flow problems in three- 
dimensional systems. This paper presents a self-contained theoretical analysis 
and some computer simulations of such lattice gases, extended to include an 
arbitrary number of rest particles, with special emphasis on non-semi-detailed 
balance (NSDB) models. The special FCHC lattice symmetry guarantees 
isotropy of the Navier-Stokes equations, and enumerates the 12 spurious con- 
servation laws (staggered momenta). The kinetic theory is based on the mean 
field approximation or the nonlinear Boltzmann equation. It is shown how 
calculation of the eigenvalues of the linearized Boltzmann equation offers a 
simple alternative to the Chapman-Enskog method or the multi-time-scale 
methods for calculating transport coefficients and relaxation rates. The simulated 
values for the speed of sound in NSDB models slightly disagree with the 
Boltzmann prediction. 

KEY WORDS:  Lattice gas automata; transport coefficients; non-detailed 
balance; staggered invariants; Boltzmann equation. 

1. INTRODUCTION 

In recent  years  lat t ice gas a u t o m a t a  ( L G C A )  as well as the lat t ice B o l t z m a n n  

e q u a t i o n  def ined  on  the  face -cen te red  h y p e r c u b i c  ( F C H C )  lat t ice 

have  p r o v e n  to  be useful too ls  for s imu la t ing  t h r e e - d i m e n s i o n a l  f low 
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problems.~ 3) Although the choice of four-dimensional FCHC lattice gases 
to model three-dimensional fluid flow seerris rather far-fetched, the point is 
that there exists no three-dimensional lattice on which fourth-rank tensors 
are isotropic. ~4'5~ The isotropy is vital for simulating flow problems, as 
it implies that the resulting fluid dynamics equations are the isotropic 
Navier-Stokes equations. Three-dimensional fluids can then be modeled 
on a four-dimensional lattice by taking only two layers in the fourth 
dimension combined with periodic boundary conditions. As the algorithms 
of Somers and Rem TM for the FCHC lattice can be easily run on work- 
stations, there is a renewed interest in the basic statistical mechanical 
properties of the FCHC lattice gas. It serves as a starting point for studying 
three-dimensional surface tension ~61 and spinodal decomposition ~7~ after 
long-range attractive forces have been added. 

In order to increase the efficiency of the implementations of LGCA 
one has focused on increasing the Reynolds number or decreasing the 
viscosity, even dropping the physical requirement of positive viscosity 
coefficients. ~''z~ This has been achieved by violating the basic conditions for 
the existence of the standard local or global equilibrium states. The new 
stationary states do not satisfy the conditions of detailed balance ~8~ or the 
less restrictive Stueckelberg conditions, ~9) which are called semi-detailed 
balance conditions (SDB) in the context of lattice gas cellular automata. ~5) 
These conditions ensure the existence of a universal factorized equi- 
librium state and of an H-theorem that guarantees the approach of every 
initial state to this factorized equilibrium, at least within the Boltzmann 
approximation:  sl 

When the Stueckelberg conditions are violated--we refer to such 
biased models as non-semi-detailed balance (NSDB)---the equilibrium state 
is not the Gibbs state. ~'-''~~ Little is known about the existence and 
properties of these stationary states. In some NSDB models spatially 
uniform initial states are unstable 12'~ t6~ and the systems undergo phase 
separation. Other models seem to lead to stable uniform equilibrium states, 
but the velocity distributions do not factorize. ~'2'~~ 

Violation of SDB gives rise to velocity correlations between the 
equal-time occupation of different velocity channels at the same or at 
different nodes in the lattice, both in pre- and postcollision states. In the 
present paper the existing theory for postcollision correlations I'~ will be 
applied to the FCHC LGCA and compared with computer simulations. 

Our main goal is an analytic study of FCHC LGCA which we 
consider as microscopic N-particle systems, using methods of statistical 
mechanics and kinetic theory with particular emphasis on the consequences 
of the lack of SDB. We recall that the concepts of irreversible thermo- 
dynamics and linear response theory ~71 are based on local equilibrium 
states being Gibbs states. Within that framework thermodynamic suscep- 
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tibilities provide exact expressions for the speed of sound and Green-Kubo 
formulas provide exact expressions for linear transport coefficients in terms 
of time integrals over time correlation functions, calculated in the Gibbs 
state. Consequently the lattice gas versions of the Green-Kubo formulas clT~ 
may not be valid for NSDB models. 

To obtain approximate results for the transport coefficients we follow 
the basic ideas of Dubrulle et  aL, ~t~ who have applied the assumption of 
molecular chaos to NSDB LGCA and obtained the Boltzmann equation. 
When comparing analytic results for FCHC lattice gases with numerical 
data or with computer simulations we use the biased FCHC model, 
developed by Somers and Rem, ~3"t81 and the nonbiased FCHC model, 
developed by WestlandJ ~9~ Recently Grosfils e t  al. ~2~ have studied spatial 
fluctuations of LGCA in equilibrium. To understand the line shapes and 
shifts in the dynamic structure factor it is necessary to go beyond terms of 
order V and V 2 in the Navier-Stokes equations, and use the concepts of 
generalized hydrodynamics and wavenumber-dependent relaxation rates of 
the Boltzmann equation, c22~ In the present paper these quantities will be 
calculated analytically for FCHC LGCA and evaluated numerically for the 
Somers-Rem collision rules. 

The majority of LGCA are plagued by spurious conservation laws. 
Here we identify 12 such quantities, present in all FCHC LGCA with or 
without rest particles. The corresponding conserved quantities satisfy 
macroscopic equations that couple in a nonlinear fashion to the Navier- 
Stokes equations. 123'241 In order to understand and control these spurious 
effects we analyze the conserved densities and calculate the corresponding 
transport coefficients, called staggered diffusivities. These quantities 
also enter into the expression for the long-time tail of the stress-stress 
correlation function, c25~ 

This paper is organized as follows. Section 2 deals with the special 
symmetries of FCHC lattices, the Stueckelberg conditions, and spurious 
invariants. Section 3 and Appendix A discuss the Boitzmann equation and 
its basic properties. Section 4 gives a theoretical analysis of the eigenvalue 
spectrum of spatial fluctuations in the Boltzmann equation, and derives 
explicit expressions for the transport coefficients with details for the bulk 
viscosity in Appendix B and for the staggered diffusivities in Appendix C. 
The numerical analysis of the spectral properties appears in Section 5. 
Computer simulations of sound speed and transport coefficients are 
compared with kinetic theory and linear response results in Section 6, and 
we conclude with a discussion. 

The theoretical discussions and analysis in the following sections and 
subsections apply to all FCHC models, as used by the Nice group, ~1'2"26~ 
by Somers and Rem, 13'~8'~9) by Frenkel and co-workers, ~-'7'281 etc. The 
graphical illustrations and simulations refer to the Somers-Rem model. 
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2. FCHC MODELS 

2.1.  S y m m e t r i e s  

F C H C  models are defined on the four-dimensional face-centered 
hypercubic lattice L~ with a set of b = 24 nearest neighbor lattice vectors c~ 
(i = 1 ..... 24), as listed in Table I. The set of lattice points r = {r.~, ry, r:,  r,.} 
is invariant under all cubic symmetry operations {S , ,P , /~ ;~ , /3=  
(x, y, z, w)}, where S~ denotes inversion of r ,  and P,t~ permutat ion of r ,  
and r , .  There is, however, an additional symmetry. To  explain it we use 
geometrical rather than group theory arguments. Inspection of Table I 
shows that all lattice points are located on parallel three-dimensional 
hyperplanes, 

r , .+  r y +  r: + r , .=  2M ( M e  2~) (2.1) 

or equivalently 

O . r = M ,  O= �89 1, 1, 1) (2.2) 

and form the even sublattice of the four-dimensional cubic lattice. The 
plane 0 - r = 0  is a mirror plane. The reflected point r '  is obtained by 
reflecting the component  r~ = 0 ( 0 - r )  of r perpendicular to the mirror,  i.e., 

r' = S ( 0 ) r  = r - 2 r •  = r -  2 0 0 .  r ( 2 . 3 )  

The reflection symmetry S(0) leaves the set of lattice points invariant. Of 
course any linear combination of Cartesian components  r= ( ~ = x ,  y, _, t) 
with coefficients a~= +1 satisfies ~ a~r~= 2M. Therefore the first eight 

Table I. D i rec t  {c;}  and Reciprocal {0 j }  Lat t ice Vectors  { i ,  j =  1 ,2  ..... 24} 

c~ 0 i 

(+_t.  _+ t. o. o l  +_{ll .  l. t. l )  _+-',(l. t. - l .  1) 

(_+1,o, +_1,o) _+_ ~(1, l, -1,  - l )  +_�89 i, l, -1)  

(+1,0,0, +1) •189 -1,  -1,  I) +(l,O,O,O) 

(0, +l.  • +�89 - I , l .  -1)  +(0,1,0.0) 

(0, +l,O, +l)  + � 8 9  +(0,0, 1,0) 

(o ,o ,  +_1, _+1) +_ ~_(t, - I ,  1. t)  _+_(o, o, o, 1) 

~,'~:,= {0, +�89 +1} =0,.0, 

c,-0~=0. • ~,-0j=0, +l/x/-2 
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entries 0 i in Table I specify unit normal  vectors of symmetry  planes and 
corresponding symmetry  operat ions S (0J  that  leave the F C H C  lattice 
invariant. The symmetries S~ and P~/~ guarantee the equivalence of these 
mirror  planes. Fur thermore ,  also the reflected vectors 0~ = S(0J  0/give new 
normal  vectors of equivalent symmetry  planes. By choosing 0 r from the first 
group of four entries in Table I and 0t from the second (so that 
0 i" 0 , =  _1/2) ,  one verifies that  0~ is one of the basis vectors ( _+ 1, 0, 0, 0), 
etc., in the third group. Therefore the planes r ,  = M ( M =  0, + 1,...; r = x, 
y, z, w) with sites restricted to the even sublattice belong to the set of 12 
equivalent symmetry  planes 0 i . r  = __+M with 0j listed in Table I. The 24 
unit vectors Oj are the reciprocal  lattice vectors, corresponding to the 24 
direct lattice vectors ci, and satisfy ci" 0 j = 0 ,  + 1, or C i " 0 j =  0, ~---1/x/~, 
where =i = a/lal is a unit vector. 

2.2. Stueckelberg Condition 

There exist several F C H C  lattice gases with 24 moving particles and 
with from zero up to seven rest particles. ~ 2  18.19.29.27.28) The dynamics con- 
sists of collisions followed by propagat ion.  The interactions are impulsive, 
as in hard-sphere systems. The particles are pointlike and possess only 
kinetic energy and unit mass. 

The F C H C  collision rules refer to a single node, and conserve the 
number  of particles and the total momen tum per node. In a single-speed 
model without rest particles (b = 24) energy and number  conservation are 
the same. The collision rules are specified in terms of a 2bx 2 h transition 
matrix A~.,., from a precollision or in-state s ( r ) =  {si(r); i =  1, 2 ..... b} at 
node r to a postcollision or out-state s ' ( r ) =  {s~(r); i =  1,2 ..... b} at the 
same node r. The occupat ion numbers  si(r) are Boolean variables that take 
the values 0 or l if the velocity state {r, ci} is respectively empty  or 
occupied. The matrix is normalized per row, 

Z Ass,= 1 (2.4) 
s '  

If collision rules are deterministic, r then all A.~.,.. take integer values 0 
or 1. Stochastic collision rules, as in refs. 18, 19, and 27, provide more 
flexibility (0~<A.,.~.~< 1). This is especially useful for the design of fully 
isotropic collision rules, which must obey A,.,,=Ae~.,.~m.,., ~ for any lattice 
symmetry  P. 

Some one-, two-, and three-dimensional lattice gases in the literature 
have a transition matrix that satisfies the detailed balance condition 4'91 

A<,.= A.~.,., (2.5) 
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In the majority of the unbiased FCHC models, however, A satisfies the less 
restrictive Stueckelberg condition, ~91 

A~. = 1, Vs' (2.6) 
s 

which has been called semi-detailed balance (SDB) in the context of lattice 
gases, c51 Note that (2.5) implies (2.6), and that deterministic SDB models 
have invertible dynamics. 

The Stueckelberg condition ensures the existence of a universal 
factorized equilibrium state, both for the deterministic and the stochastic 
models, but it also restricts the degrees of freedom in fine tuning the 
collision rules. For that reason, several authors have constructed biased 
FCHC models without semi-detailed balance (NSDB), which optimize the 
Reynolds number. Thereby it is assumed that a factorized equilibrium state 
does exist for these models. ~''2''8"271 

2.3. The Somers-Rem Model  

All graphical illustrations shown in this paper have been calculated 
using the Somers-Rem model, cl8"3~ This model does not involve rest 
particles (b = 24). The collision rules are stochastic and fully isotropic with 
respect to the group of lattice symmetries. In order to optimize the 
Reynolds efficiency per lattice unit, R e .  = gc~/v, the Stueckelberg condition 
has been violated. 

Collision rules have been selected that minimize the viscosity v and 
maximize the non-Galilean factor g (the rate of convection), subject to the 
constraints of conservation of particle number, local momentum, and 
isotropy. Minimization of the viscosity involves minimization of 11'291 

I Ass' I E sic,,ci~ E s:c/acill (2.7) 
s.s'e[N.P] r i j 

for each packet IN, P-1 of states with equal particle number N and total 
momentum P. For many packets, the A~.,. matrix is not uniquely specifiec 
by this optimization criterion and the given constraints. The remaining 
degrees of freedom are used to maximize the non-Galilean factor g by 
maximizingl~81 

E As~ Es;(c," P) 2 (2.8) 
s..," ~ IN.P] i 

for each packet [N, P].  
The minimization of (2.7) is invariant under particle-hole duality 

si--, 1 - s i ,  s ~  l - s ~ .  As Eq.(2.7) is used as the primary optimization 
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criterion, the viscosity of the model will be symmetric around p = 12. The 
secondary criterion (2.8) tends to concentrate the particles at velocity direc- 
tions that are parallel or antiparallel with the macroscopic flow direction. 
If sufficient degrees of freedom are available, the outcome of this optimiza- 
tion procedure will not exhibit particle-hole duality. From the numerical 
data of Fig. 1 it has indeed been verified that the eigenvalue 2 (which is 
associated with the kinematic viscosity) is symmetric around p = 12, and 
that the eigenvalues ~ and T are not symmetric, indicating that the collision 
rules do not exhibit particle-hole duality. 

The Stueckelberg condition specifies that if all states in a packet 
[N, P ]  have an equal probability of occurrence as precollision state, 
then these states are also equally probable as after-collision state. An 
H-theorem tSI proves convergence toward a universal equilibrium state with 
a uniform probability distribution within each I-N, P ]  packet. Hence, if the 
Stueckelberg condition holds, criterion (2.8) will not depend on the 
collision rules, and the g-factor will be universal: 2 (24 -2 /9 ) / 3 (24 -p ) .  

The implementation of the model involves an algorithm which reduces 
the full state space of 224 entries into a set of 106,496 representative states, 
for which optimized collision rules are stored in a table that fits in the 
memory of modest computer equipment. Given a precollision state s, the 
reduction algorithm is capable of determining a suitable lattice isometry 
P.,  which transforms s into a unique representative state Sr for which the 
after-collision state s'r is known from the table. The inverse lattice isometry 
is then used to compute the actual after-collision state s' =PTJ(S'r). Full 
isotropy of the collision operator is established by first applying a random 
isometry on the precollision state s and afterward its inverse on the 
postcollision state s'. The technical details of this algorithm can be found 
in ref. 3. 

2.4. Physical and Spurious Invariants 

As the collisions conserve the number of particles and momentum per 
node, the total number of particles N =  Zr.iSi(r, t) and total momentum 
P = ~r.i c;s~(r, t) in the system are conserved. At the macroscopic level the 
conservation laws for number and momentum density lead to the nonlinear 
Navier-Stokes equations of fluid dynamics. However, there are additional 
spurious invariants, as first discovered by Zanetti ~231 for two-dimensional 
triangular lattice gases, referred to as staggered momenta. His arguments 
can be extended to FCHC lattice gases, as shown below. 

Take any of the 12 equivalent three-dimensional mirror (hyper) planes 
0. r = M, where the normal vector 0 is a reciprocal lattice vector. For a 
given 0 the lattice can be divided into an even ( + )-sublattice (M is even) 
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and an odd (-)-sublat t ice (M is odd). Consider the total 0-momentum 
Pl,+~(t)=Zr~+~Y',iO'cisi(r,t)  on the (+)-sublattice at timer. All 
particles with velocities in the hyperplane satisfy 0 . e i = 0  and do not 
contribute to P~+ ~(t). All particles with a nonvanishing component parallel 
to 0 satisfy 0 .c~= _+1 (see Table I), and will propagate at time t + 1 to the 
nearest-neighbor planes belonging to the (-)-sublattice.  Consequently 
Pro+ ~(t) = P~,,- ~(t + 1 ) and vice versa, and 

Ho = ( - 1 )' [P] ,+ ~(t) - P*o~ I ( t ) ]  = ~ ,  ( - l ) ' +  o . r  O o C i S i ( r  ' t )  
r . i  

(2.9) 

is a constant of the motion, referred to as the staggered momentum. There 
are 12 similar mirror planes, and therefore also 12 conserved staggered 
momenta in FCHC models, specified by the reciprocal lattice vectors 0 i 
listed in Table I. Obviously, inclusion of rest particles does not destroy 
these invariants, because they do not contribute to (2.9). 

Knowledge of the existence and an understanding of the properties of 
these 12 additional locally conserved densities and corresponding transport 
coefficients is paramount for the validation of LGCA as tools to study the 
equations of fluid dynamics. 

At the macroscopic level the staggered momentum densities give rise 
to 12 additional hydrodynamic equations that couple in a nonlinear 
fashion to the Navier-Stokes equations for the lattice gas fluids. ~24'231 In the 
unphysical macroscopic equations new transport coefficients enter, called 
staggered diffusivities, which are calculated in Section 4.3. The spurious 
effects of the spurious slow variables should be suppressed as much as 
possible in LGCA simulations by preparing initial distributions with very 
small values of Ho. 

3. K I N E T I C  T H E O R Y  

3 . 1 .  M e a n  F i e l d  T h e o r y  

In the present paper lattice gases are only described in mean field or 
Boltzmann approximation. Analytic results for FCHC models beyond 
mean field theory barely exist, c-'5"-'7"28'3~ 

The basic quantities in these theories are the distribution functions 
f,(r ,  t)=-<si(r)>,r where the occupation number si(r) of the state {r, ei} 
is averaged over a nonequilibrium ensemble. Its time evolution is given by 
the nonlinear Boltzmann equation, 

f,.(r + c~, t +  I ) - f~ ( r ,  t ) = . ~ ( f ( r ,  t)) (3.1) 
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This equation expresses the evolution of the distribution function subject to 
propagation and collisions .~(f) .  The collision term J, .(f)  can be expressed 
in terms of the collision matrix as c5~ 

h 

J , . ( f ) =  ~ (s;-s,)A,..,., [I f ~ ' ( l - f / ) ' - " )  (3.2) 
s,s' j = l  

Due to mass and momentum conservation, .4 satisfies 

~ ,~.(f) = O; ~ c,~ J, .(f)  = 0 (3.3) 
i i 

where {1, %; a =x ,  y, z, w} are collisional invariants. In this paper we 
follow the convention that all sums over i , j  .... run over all velocity 
channels. Here {i= 1, 2 ..... b = 24}. In Appendix A the extension to rest 
particles is given. 

If the transition matrix satisfies the Stueckelberg condition, one can 
prove that the H-function H(t)= Zr.i.L(r, t ) In f . ( r ,  t) decreases monotoni- 
cally to its equilibrium value. Furthermore, there exists a stable, unique, 
spatially uniform equilibrium state, and transport coefficients are positive. 

In case the Stueckelberg condition (2.6) is not satisfied, an H-theorem 
does not exist, and existence of and convergence to a stable uniform and 
stationary equilibrium state cannot be guaranteed. However, if a uniform 
and stationary (not necessarily stable) solution j)(r, ~ ) = f  of the lattice 
Boltzmann equation (3.1) exists for a 24-bit lattice gas at rest (vanishing 
total momentum), it is given by f =  p/24 due to lattice symmetries. 

3.2. Linearized Boltzmann Equation 

To study the stability of the stationary solution f =  p/24 of the 24-bit 
lattice gas one can linearize the lattice Boltzmann equation (3.1) around f 
and study its eigenvalues, which are related to the transport coefficients of 
the lattice gas. 

These arguments are the motivation to study the linearized Boltzmann 
equation obtained by substituting f,.(r, t ) = f +  6f,.(r, t ) in  (3.1) and keeping 
only terms linear in 6f, i.e., 

6f,.(r + c,, t +  1)= 6~.(r, t)+~12ijJJ}(r, t) (3.4) 
J 

where the stationarity relation . J , ( f ) =  0 has been used. Its explicit form is 
derived in Appendix A. The complicated optimalization techniques for con- 
structing collision rules in the different FCHC lattice gases 12'~8'19~ do not 
allow a simple analytic specification of the 2 -'4 • 2 24 transition matrix A,;. 
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Nevertheless the 24 x 24 collision matrix /2 has for general collision 
rules a simple structure because of conservation laws, lattice symmetries, 
and the restriction to a single-speed model. It is symmetric and has only 
three independent matrix elements (see Appendix A). Its eigenvectors and 
eigenvalues are defined as 

Ou, ,  = - t o . u .  (3.5)  

where u,,(c) is a 24-vector with components  {u,,(c;); i =  1, 2 ..... 24}. Inner 
products are denoted by 

( a I b ) = ~ a,b, (3.6) 
i 

The 24 eigenvectors u,,(c) are completely determined by lattice symmetries, 
and given as tensor polynomials, with corresponding eigenvalues: 

u,,(e) = 1, c'~ 
[ 

u~(c)  = c~c~ - 5fi~t~ 

. ~ . . ( c )  = c~( c~ - !)3 
2 1 2 u~.,,(e) = (c~- ~_)(c/.- �89 

(co,, = 0, p ,  = 5, ct = x, y, z, w) 

(to,,= 2, if,, = 9) 

( to , ,=  ~, ~ , , =  8, ~ ~ fl) 

(to,, = r, p,, = 2, ~4:fl)  

(3.7) 

where p,, is the multiplicity of eigenvalue co,,. The eigenvectors u,, 
corresponding to the same eigenvalue to,, span a/a,-dimensional space, 5 but 
are not yet orthogonalized. 

The nonvanishing eigenvalues 2, r z can be expressed in the matrix 
elements f2o,  which are evaluated numerically using the formulas (A.2) in 
Appendix A. Figure t shows their numerical values as a function of p for 
the Somers-Rem collision rules. As we shall see, the eigenvalue 2 deter- 
mines the kinematic viscosity. In the lattice gas literature the eigenfunctions 
with to,,= ~ or z are frequently referred to as "ghosts." The eigenvalue 
2(p) = 2 ( 2 4 - p )  is symmetric, as in self-dual models. This is a consequence 
of the optimalized collision rules. Closer inspection of Fig. 1 reveals that 
the eigenvalues ~(p) and r(p)  do not posses this symmetry, because the 
Somers-Rem model is not  self-dual. 

5 The equality of the eigenvalues corresponding to u,, and u,,. in (3.7) is a direct consequence 
of the extra symmetry (2.3) of the FCHC lattice. This extra equality is also the essential 
ingredient for proving that the viscosity tensor in FCHC models simplifies from cubic to 
isotropic. 
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Fig. 1. Eigenvalues 2, ~, z of the linear collision operator  -Q for the NSDB model of Somers 
and Rem as a function of the density p, where 2(p) is symmetric around p = 12, but r and 
r are not. 

4. RELAXATION SPECTRUM 

4.1. Eigenvalue Problem 

Of most physical interest are the hydrodynamic or slow modes--here 
shear and sound modes--because their decay rates are given by transport 
coefficients. 13'1 In fact the calculation of the eigenvalues or decay rates is an 
attractive and simple alternative to the Chapman-Enskog method t32) or 
the multi-time-scale formalisms ~5~ to calculate the transport coefficients in 
the FCHC models. We follow this method in the present paper. 

After this motivation we turn to the eigenvalue problem. As /2 is 
translationally invariant, it is convenient to perform a Fourier analysis and 
substitute 

6f,.(r, t)=eikr+:(k)'~l(k, ei) (4.1) 

into the kinetic equation (3.4), which reduces to the eigenvalue equation 

5 '~- '(1 + f2) ~,,, = A,,~,, (4.2) 

where ~b,, is a b-vector with components ip,,=~b,,(k, ci). The propa- 
gation operator 5e (k )=exp ( i k ' e )  is a diagonal matrix with ~%~(k)= 
foexp(ik.ei). E igenvectors and eigenvalues are denoted by ~,,, and 
A,,(k) = exp[z,,(k)], respectively. The matrices 6 e and g'2 are symmetric, but 
~ - I f 2  is not. Left and right eigenfunctions @,, and @,, are therefore 
different 12''33) and form a biorthogonal set satisfying (~,,  I if,,,)=.A,;,& ...... 
where A/;, is a normalization constant. The wavevector k belongs to the 
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reciprocal lattice 5 ~ of the FCHC lattice with sites Q = 2re Z~ Nz@~, where 
N~ are integers and {@t} form a set of four independent unit vectors taken 
from Table I. The vector k can be restricted to the first Brillouin zone 
because 

z,,(k) = z,,(k + Q) (4.3) 

is a periodic function. The real part of the eigenvalue determines its 
stability. If Re z , ( k ) <  0, the mode n is stable and decays. If Re z, ,(k)> 0, in 
some range of k-values, spontaneous fluctuations of that wavelength will 
grow, and the mode is unstable. If the imaginary part Im z,(k)~_ cs(k)k is 
nonvanishing, the mode is propagating with a phase velocity c~(k) (where 
k = Ikl ). The long-wavelength excitations (k ~ 0) are soft (slowly decaying) 
h y d r o d y n a m i c  modes with z.(k = 0 ) =  0, or hard (rapidly decaying) k ine t i c  
modes with z,,(k = 0 )  40 .  

The soft modes consist of two propagating sound modes ft. with 
a =  _+, and three shear or transverse momentum modes if j_. with 
~ =  1,2,3, referring to three independent transverse directions e.(k), 
perpendicular to k. In the limit of small k the eigenvalues are given by the 
hydrodynamic dispersion relations ~3~ 

z~(k) = - i a c . ~ k  - F k  2 

z• = - v k  2 

(cr= +)  

(c~= 1, 2, 3) 
(4.4) 

where v is identified as the kinematic viscosity and F as the sound damping 
constant, with k =  Ik[. Therefore a perturbation calculation of z,(k) for 
small k yields the transport coefficients, as will be shown in the next 
subsection. 

4.2. Per tu rba t ion  Theory  

The eigenvalues - , (k)  of the two-dimensional lattice Boltzmann 
equation have been studied in the literature, c22"341 also in systems with 
unstable modes. ~15"351 Here the same method is applied to the pseudo-three- 
dimensional FCHC models, and we briefly summarize the results. 

We first consider the hydrodynamic modes and eigenvalues following 
the method explained in ref. 22. In the limit of small k it is convenient to 
write the eigenvalue equation (4.2) as 

[e : "ck l+i* ' ' ' -  1 - - I2]  #],, = 0 (4.5) 

_ .~o~ + ikzlL~ + and eigenfunctions, and to expand eigenvalues, _~,,=..,, ..., 
t#,, = .tO I~ + ik~l,, ~ + ..., in powers of ik, where =~1~ = 0 for hydrodynamic 
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modes. The resulting equations can be solved order by order, and one finds 
for the eigenvalues of shear modes (n = _l_c~; c~ = 1, 2, 3) and sound mades 
( n = a ;  a =  +)  to order (ik) 

z~ l ) -0 ,  , e l )_  _ a G  = _ a / x / ~  (4.6) 
. t . ~  - -  " ~ a  - -  , 

and to order (ik) 2 

1 1 
- (  c,c .~l ~+5 Ic,c ~ ) /  ( c l= I c• 

(4.7) 
z l 2 , = / -=  1 , , 1 1 [ c ] - c ~ ) / ( c ,  l c , )  -~  (c;-e;l ~+~ 

where c/=f~.c and c• are longitudinal and transverse 
components of c and {k, G(k); c~= I, 2, 3} is a complete set of orthogonal 
unit vectors. 

The same expressions have been obtained before for two-dimensional 
LGCA. 1361 In this manner we have derived expressions for the transport 
coefficients in mean field approximation, where f2 -~ is the (quasi) inverse 
of /2  in the orthogonal complement of the nullspace (spanned by the colli- 
sional invariants). It should be noted that these formulas (4.7) are valid for 
all isotropic d-dimensional LGCA. In Appendix B this result is extended to 
the bulk viscosity by including an arbitrary number of rest particles. The 
Chapman-Enskog results for transport coefficients in continuous gases 
have essentially the same form as (4.7), with f2 -~+  1/2 replaced b y / 2  -~. 
Of course, there /2 is an integral operator and the definition of inner 
products includes a Maxwell-Boltzmann factor as weight factor. ~32) 

For FCHC models without rest particles these expressions can be 
calculated directly in tems of a single eigenvalue by observing that both 
c : •  and c ~ - c ~  with c~ = 1/2 are linear combinations of eigenfunctions 
u,p(c) in (3.7) with eigenvalue 2. A simple calculation yields then 

v = ~ ( ~ - ~ ) ;  F=~v (4.8, 

In general the expressions in (4.7) depend on the direction of k. This is for 
instance the case in lattices with only cubic symmetry. However, the extra 
symmetry (2.3) of the FCHC lattice makes the eigenfunctions c.,.c.,, and 
c ~ -  1//2 degenerate, and guarantees the isotropy of the viscosity tensor in 
FCHC models. 

The viscosity tensor contains a kinematic viscosity v and a bulk 
viscosity ~. In single-speed models like the FCHC models considered 
above, ~ is vanishing. However, in models with one or more rest particles, 

822/74/5-6-I0 
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( is nonvanishing. In Appendix B we show that the sound damping  
constant  for such systems is given by a form very similar to (4.7). For  
F C H C  models this can be written as F =  43-v l + _~(, where the bulk viscosity 
is given by 

{1 2~f 1 I"% 
= cs ) t ; - -U (4.9) 

The eigenvalue to 2, calculated in (A.6) of Appendix A, depends only on 
matrix elements o f / 2  connecting rest particles with moving particles. 

4.3. S t a g g e r e d  M o m e n t u m  M o d e s  

The existence of the spurious conservat ion law in (2.9) for a given 0 
implies the existence of a slow mode, the staggered m o m e n t u m  mode, for 
k close to x0, as discussed in Appendix C. Its ampli tude decays as 

exp[zo(k) t ]  = ( - 1)' exp[  - D o ( k )  Ik - x012 t] 

as shown in ref. 36. The analysis and explicit calculation of the staggered 
diffusivities for F C H C  models are new, and apply to all F C H C  models 
with or without rest particles. 

For  the staggered diffusivity we obtain an expression which depends 
on the angle between k and O, i.e., 

1 +1 Icocl)/(col co) Do(fQ = - ( c o c t l  [2 + A(co) 
/ . . ,  

(4.10) 
A(c0)---- 1 - I - ( - - 1 ) ~  --Co) 

with Co = 0 . e  and c / =  k .c. Explicit calculation in Appendix C yields an 
anisotropic diffusivity 

Do(f~) = Dll cos 2 Z + D• sin 2 Z 

= 6v cos 2 g + v sin- X (4.1 1 ) 

with cos ;( -- 0 .  f~. 
As z0 (k )=  zo(k + Q) on account  of (4.3), there is a spurious soft mode  

at all points Q + x0, where Q is a site of the reciprocal lattice 5 ~ (see 
Section 4.1) and 0 any of the 0-vectors in Table I. For  instance, in case 
k II (1,0,0,0) there exists a slow staggered mode  at k o = x ( 1 , 0 , 0 , 0 ) = x 0  

^ ^ 

with cos Z = 0" k = 1. The decay rate of the mode  is 

zo(k) = x i -  6v(k - ~)2 (4.12) 
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For k II (1, l, 1,0) there is a staggered m o d e a t k l  = re(l, 1, 1, 0 ) = Q - n 0 ,  
characterized by 0 = (0, 0, 0, 1) with cos X = k- O = 0. The decay rate is 

z0(k) = h i -  v(k - n x/~)'-  (4.13) 

5 .  N U M E R I C A L  R E S U L T S  

The relevance of the information obtained by the numerical calcula- 
tion of the eigenvalues of (4.5) is discussed extensively in refs. 22 and 34. 
Here we restrict ourselves to discussing some generic properties of FCHC 
spectra. 

The numerical problem of finding the eigenvalues A , ( k ) =  exp[z , (k) ]  
of (4.2) is relatively simple. It involves the calculation of the 24 roots of the 
secular determinant of the complex matrix in (4.2) as a function of 
wavenumber k and density f =  p/24.  The eigenvalues z,(k)  are in general 
complex with Im z,(k) defined modulo 2ft. Figure 2 shows a typical eigen- 

5 p = 12.0 , k / / ( 1 , 0 , o , o )  (o) 

o 4 
O 

x 

~" 3 
c 

N 

2 
I 
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0 
1 2 3 4 5 6 

wovenumber k 

p '= 12.0', k / /  (Ii0,010) ' " ('b) 
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l I 

0 
1 2 5 4 5 6 

wovenumber k 

Fig. 2. Spectrum of - R e z u ( k )  versus the wavevector k for the NSDB FCHC model. The 
density is p = 12, and k is parallel to ( 1,0, 0, 0). (a) The lower part of the spectra, where slow 
modes are seen at k-~ 0 (hydrodynamic) and k = 7r (staggered). ( b )On ly  kinetic modes. 
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value spectrum at density p = 12 for the real part of z,(k) with k parallel 
to a reciprocal lattice vector 0j, as listed in Table I. Figures 2a and 2b 
show, respectively, the 9 smallest and 15 largest eigenvalues. The k-period 
in a 0-direction is 27r. The plots indicate that all modes are linearly stable, 
i.e., Re z,,(k) < 0. This appears to be the case for all k and for all densities p. 

Figure 2a shows.five soft hydrodynamic modes with Re z,(k) vanishing 
like (9(k 2) as k --* 0. Two of these modes are propagating sound modes with 
a nonvanishing lm z , ( k ) =  _+c~(k)k. In the long-wavelength limit the speed 
of sound c.,.(k) approaches 1 / , ~ ,  independent of magnitude and direction 
of k, as illustrated in Fig. 3. For long wavelengths with 2n/k > 8 lattice 
units, the sound speed varies by less than 2 % in the Somers-Rem model. 

In Fig. 2 one further observes the purely diffusive shear mode 
(labeled l ) ,  which is threefold degenerate, and two propagating damped 
sound modes (labeled a). According to (4.4), the long-wavelength limit of 
the real part of the hydrodynamic eigenvalues determines the (constant) 
transport coefficients v and s We also note that the damping constants of 
shear and sound modes are small compared to those of kinetic modes in 
a sufficiently large range of k values (k ~< 1 or 2 > 6), so that hydrodynamic 
and kinetic time scales are well separated. This range covers both classical 
hydrodynamics with constant transport coefficients as well as generalized 
hydrodynamics. The horizontal line in Fig. 2a at o9,(k)=4.6 represents a 
constant eigenvalue. 

In generalized hydrodynamics one considers a wavenumber-dependent 
kinematic viscosity v ( k ) = - z •  2 and sound damping constant 
F(k) = - R e  z,,(k)/k 2. These functions are respectively shown in Fig. 4 and 
5 for two different directions at density p = 4. Perhaps the most important 

0.8 

u 

~. 0.7 
t n  

u~ 

0.6 

p = 12.0 k / /  (1,0,0,0) 

k / /  (1,1,0,0) 

hydro 

. . . . . . . . . . . . . . . . . . . . . .  �9 .,~...:..:t..:....... 

1 
wovenumber k 

Fig. 3. Speed of sound cJk)  versus k for density p = 12. The solid line corresponds to the 
long-wave length result, c , =  1/,,/~. Symbols refer to lm =,(k)//," for k parallel to ( l , 0 , 0 , 0 )  
(dots) and k parallel to (1, 1,0, 0) (triangles), obtained by numerically solving the eigenvalue 
spectrum. 
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Fig. 4. Viscosity v(k) versus k for density p =4.  The solid line is the hydrodynamic value 
given by Eq. (4.8). Symbols refer to the results obtained by numerical evaluation of the 
spectrum. These results practically coincide with the hydrodynamic value for k parallel to 
(1, 0, 0, 0) (circles). For k parallel to (1, 1, 0, 0) (triangles) the deviations are bigger. 

observation to be inferred from Fig. 4 is that the damping constants v(k) 
and F(k) of the hydrodynamic modes are positive for all k values, so that 
the spatially uniform state is stable for the Somers-Rem FCHC lattice gas 
with NSDB collision rules. From the point of view of physical validation 
of FCHC lattice gases, this positivity is a point in favor of the Somers-Rem 
model, as compared to H6non's NSDB FCHC-9 model, (2) where the 
kinematic viscosity is negative at small k values. Furthermore, as k ~ 0, 
viscosity and sound damping approach the constant values v and F =  3v, 
in agreement with (4.8), where 2 is given in Fig. 1. We further note that 
near the smallest wavenumbers (k = 0.03) the threefold degeneracy in Fig. 4 
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Fig. 5. The same as in Fig. 4, but for the sound damping constant F(k). Here deviations 
between the hydrodynamic value and those obtained from the spectrum are more pronounced. 
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and the twofold one in Fig. 5 of the hydrodynamic eigenvalue Re z,,(k)/k 2 
are lifted by numerical inaccuracy. The Somers-Rem FCHC lattice gas is 
well suited for simulating hydrodynamic equations, because classical 
hydrodynamics is observed for k ~< 0.5, where v(k) and F(k) deviate, respec- 
tively, by less than 2% and 4% from their long-wavelength limit. At finite 
k values the sound damping constant F(k) differs from 3xv(k).  The 
viscosity increases at most 7 % when k increases to 1.5. The sound damping 
constant increases much more rapidly. A similar k dependence of v(k) and 
F(k) is found at other densities. We have further noticed that the propagat- 
ing sound modes may become diffusive and that, conversely, pairs of purely 
diffusive modes may become propagating. 

There is also a clear signal of the existence of a spurious conservation 
law present in Fig. 2, namely an eigenvalue z,,(k) that vanishes at afinite k 
value. This is one of the spurious staggered momentum modes discussed in 
Eq. (4.12) of Section 4.3. We have numerically verified that Re zo(k) is 
indeed given by a quadratic form like (4.9) and (4.11) with staggered 
diffusivities given by Do= Dll =6v. According to (4.11), the staggered 
diffusivity is anisotropic. We have also verified numerically that for 
k II (1, l, 1, 0) the staggered diffusivity is given by Do=D.L =v, and that 
for k II (1, 1, 0, 0) the staggered mode is absent, in agreement with the 
analytic result of Section 4.3. 

One of the striking new features of all FCHC spectra, as compared to 
those of the more common triangular lattice gases, ~22~ is their high degree 
of degeneracy. Among a total of 24 eigenvalues, only four eigenvalues co = 
{0, 2, ~, T} are distinct at k = 0 .  For finite k values the degeneracies are 
only partially lifted, depending on the k direction. For k parallel to 
(1 ,0 ,0 ,0) ,  (1, 1,0,0),  and (1, 1, 1,0) there are only 10, 12, and 15 eigen- 
values with distinct Re-,,(k). These numbers can be understood on the 
basis of the symmetries that leave the matrix 6 ~'- ~( 1 + .Q) invariant. On the 
basis of these symmetries one can construct different sets of basis vectors 
u,,(c) appropriate for the diagonalization of the matrix 3 e - ' ( I  + O) for any 
k vector parallel or perpendicular to the lattice vectors. In fact many 
properties of the FCHC spectra can be explained in great detail, 12-'~371 but 
will not be discussed here any further. 

6. S I M U L A T I O N S  

6.1. Ve loc i ty  Corre lat ions 

As mentioned in the introduction, the equilibrium state of NSDB 
FCHC lattice gases is not the Gibbs state, because the equal-time velocity 
correlation function in equilibrium does not vanish, whereas it does vanish 
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in the Gibbs  state, t~~ Here we restrict ourselves to the observat ion of 
equal-time two-point  correlations on the same node in equilibrium for the 
Somers -Rem model. They are defined as 

(6si3sj)  _ ( s i s j ) _ f 2  (6.1) 
C,j -  C(p, ~,j)= [((6s,)2)((6sj),_)],/, - - f (1  - - f )  

where the averages are taken at a fixed time over the whole lattice and 
where 6 s ~ = s i - f ,  with f=p /24 .  As the equilibrium correlations (sisj)  
possess all the F C H C  symmetries,  it depends only on the angle ~b0= 
arccos(~j '~j)  between the velocity directions. There are only five different 
values of  ~b~j according to Table I. 

To  improve the statistics we average C u over all pairs with the same 
angle ~bu. 6 In the F C H C  lattice there are .A/'(~/3)=JV(2rc/3)=96 pairs 
with ~b~j=n/3 and 2~/3, respectively, J V ( ~ / 2 ) = 7 2  with ~b0=~/2, and 
Jl/'(rt) = 12 with ~b 0. = r~, and of course JV'(0) = 24. All simulations are per- 
formed on a quasi-three-dimensional system of 20 x 20 x 20 x 2 lattice units. 
In the initial state every velocity channel is occupied with equal probabil i ty 
p/24. For  the unbiased F C H C  model of ref. 19 we find indeed vanishing 
correlations. In simulating the biased F C H C  model of ref. 18 we observe a 
rapid buildup of correlations within 50 time steps, which remain constant  
as time progresses (tested up to 10,000 time steps). Figures 6A-6D show 
the pre- and postcollision correlation functions on a single node for all four 
angles. For  a definition of the postcollision correlations we refer to ref. 10. 

Figure 6 shows the density-dependent pre- and postcollision correla- 
tions for all angles. As we can see, the precorrelat ion is systematically smaller 
than the postcorrelat ion (by factors of approximate ly  1.5 for 2rt/2 to 4 for 
~/2); this is to be expected, as the propagat ion  step moves the particles to 
different nodes. This acts as a reshuffling, which partially destroys the 
velocity correlations. 

The optimalizat ion techniques used by Somers and Rem in construct- 
ing their collision tables have the tendency to produce output  particles 
moving parallel or antiparallel to the local momen tum density, and thus to 
each other. We therefore expect that the angle rt gives a large, positive 
correlation, and n/2 gives a relatively large, but negative correlation. The 
angles n/3 and 2rc/3 show smaller correlations (in absolute value). This is 
also understandable  in view of the argument  above. In fact similar correla- 
tions are observed in all NSDB F C H C  models. It has been noted by 
H6non that  the properties of the N S D B  model FCHC-6  strongly resemble 

6 H6non has pointed out to us that the correlations C~i in a quasi-three-dimensional system 
are strongly anisotropic, and may differ by a factor of two depending on whether e~ and e t 
have a component in the fourth dimension) 26~ 
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the Somers-Rem model, and that the SDB model of Westland is similar to 
the FCHC-3 model. 126~ 

It is interesting to know how much correlation the collision table 
builds up starting from a fully factorized lattice state, i.e., with no correla- 
tions at all. This is shown by the solid lines in Fig. 6. They represent the 
theoretically predicted postcollision correlations that are built up through 
the biased collision rules in a single collision step, starting from a precolli- 
sion state with a totally uncorrelated velocity distribution. How to compute 
these quantities from the transition matrix A~.,s is shown in ref. 10, to which 
we refer for details. 

The mean field plots show qualitatively as well as quantitatively a 
reasonably good agreement with the simulation results. Only in the 
C(p, 2n/3) plot is the relative deviation from simulation values substantial, 
for which we have no explanation. The comparison suggests a quick 
buildup of correlations during the collision step, whereas the reshuffling of 
particles during the propagation step destroys part of the correlations. 

6.2.  S p e e d  of  S o u n d  

To measure the speed of sound and sound damping coefficient we 
follow the method of Dubrulle etal. ~ We set up a longitudinal wave 
v,.(0) = v.,.o sin kx in the initial flow field v. The system size is 60 x 20 x 20 
and we have chosen k = 2 n / 6 0  2 0.1, well inside the region of classical 
hydrodynamics (see Fig. 3). The initial amplitude should satisfy V,o,~ 
cs = l/x//-2, and is chosen such that (0(v 2) 2 C(Vv). To linear order this wave 
will relax as a superposition of two sound modes 

v.,.(k, t) = v.,-o cos(c.,.kt) e x p ( - F k 2 t )  (6.2) 

The initial amplitude was chosen as V,.o=0.05. After a sufficiently long 
equilibration period of 100 time steps the speed of sound was measured by 
locating the zero crossings in (6.2) up to 800 time steps. For longer times 
the signal-to-noise ratio becomes too small. The measurements were done 
at an average density of p = 5.0 particles per node with the number of 
particles typically about 2.4 x 105, and the results were averaged over three 
runs. 

Using this method, we obtained the following results for the speed 
of sound: cs = 0.707 +0.002 for the SDB FCHC model, ~9~ satisfying the 
Stueckelberg condition, and cs = 0.724 + 0.005 for the NSDB FCHC lattice 
gas model of Somers and Rem. The statistical accuracy was insufficient 
to extract values for the damping coefficient f'. In the absence of rest 
particles the prediction of kinetic theory for the speed of sound is c.~ = 
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I/v/2---0.7071, independent of the validity or violation of (semi)-detailed 
balance, at least for models without rest particles. In the presence of rest 
particles the speed of sound c.,. does depend on the collision rules, as 
calculated explicitly in Appendix B. The measured value in the NSDB 
case without rest particles exceeds the theoretical value by about 3%. 
This is well outside the error bars. The discrepancy between the kinetic 
theory value and the measured value is caused by the equilibrium velocity 
correlations measured in the previous subsection. 

The lineal" response theory of Ernst and Dufty [see ref. 17, Eq. (4.2)] 
gives an expression for the speed of sound, in which on-node correlations 
are kept, but off-node correlations are neglected, i.e. 

(g,. I g.,-) 1 Z ~ c , ' c j ( 6 s i ( r ) 6 s j ( r ) )  (6.3) 
c ; -  ( P I P )  - d  ~ i  (6s i ( r )6s j ( r ) )  

where d is the spatial dimension (d=  4 in the FCHC model). This expres- 
sion contains the on-node velocity correlations for i 4: j, which are present 
in the NSDB FCHC equilibrium state, and are missing in the Boltzmann 
approximation c~= 1/,,/~-~0.707. On the other hand, in SDB FCHC 
models, where velocity correlation is absent, (6.3) reduces to the kinetic 
theory result, c~ = e~/d= 1/2 for FCHC models. 

Furthermore, using the results of the previous subsection, we are able 
to evaluate (6.3) for our FCHC model, i.e., 

1 Z~ ./~'(~b) cos qkC(p, (~) _ 0.723 (6.4) 
c]: = 2  Zr ~U(~b) C(p, (~) 

where the summation runs over ~b = 0, ~/3, 7z/2, 27z/3, and ~z. The multi- 
plicities are given in the previous subsection and the values C(p, qb) at 
p = 5.0 can be read off from Fig. 6. 

The simulation value 0.724-t-0.005 is in good agreement with the 
predictions of linear response theory, which takes on-node equilibrium 
velocity correlations into account, and disagrees with the prediction of the 
approximate Boltzmann equation. We further observe that the speed of 
sound measured by Dubrulle et al. in the deterministic NSDB FCHC-6 
model is smaller than 1/,v/2, although the model is reported ~261 to resemble 
the stochastic NSDB Somers-Rem model in many aspects. 

6.3. V iscos i ty  

To measure the kinematic viscosity we follow again the method of 
Dubrulle et al. and initialize a flow field v,.(0)= V,.o and v.,.(0)= v.,.o cos(kx) 
in a system of 60 x 20 x 20 lattice sites with a wavelength of 60 lattice units. 



Here we use Vxo=0.1 and V,.o=0.02. Then v , . ( t ) = v . , . o  and the shear wave 
will decay as 

v.,.( t ) = %.o cos(kx) e x p ( -  v k  2 t ) (6.5) 

0 . 4  

The results of the measurements of v are shown in Figs. 7a and 7b for the 
unbiased and biased F C H C  lattice gas that (a) obeys or (b) violates the 
Stueckelberg condition, and compared with the predictions from kinetic 
theory. The viscosity in the latter model is lower than that in the former 
model, as was to be expected. The biased models were specifically construc- 
ted to lower the viscosity. In the model of Fig. 7a the deviations between 
simulations and theory vary between 0 and 20 %, depending on the density. 
In models of Fig. 7b the deviations for 5 < p < 15 can be as large as 200 %. 
We recall that in triangular SDB lattice gases the larger part of the 
difference between simulated and calculated transport  coefficients is 
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Fig. 7. Viscosity v versus the density p. (a) The semi-detailed balance model; (b)The 
non-semi-detailed balance model. Solid lines denote the hydrodynamic values, (4.8), while 
dots represent computer simulations with corresponding error bars. 
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accounted for by extending the mean field theory to include correlated ring 
collisions (particles collide, propagate, and recollide again)} 38~ 

We conjecture that the large relative deviations between simulations 
and mean field theory in biased models will again be accounted for by the 
ring kinetic equation. This theory not only accounts for dynamic correla- 
tions, but also for geometric correlations caused by the slab geometry of 
the quasi-three-dimensional system} 3~ The large deviation at p = 1.0 is 
probably caused by a bad signal-to-noise ratio at low density, because of 
the rather long equilibration times. The system may still be outside the 
linear regime. 

7. CONCLUSIONS 

The main achievements of this paper are: 

(i) A systematic and compact presentation of the kinetic theory for 
general FCHC lattice gases with or without rest particles and violating 
(semi)-detailed balance. 

(ii) A geometric interpretation of the extra FCHC symmetry, which 
is responsible for the isotropy of the viscosity tensor and the nonlinear 
convective term in the Navier-Stokes equation. This geometric view 
unequivocally establishes the existence of 12 spurious modes (staggered 
momentum densities) in all FCHC models with or without rest particles. 

(iii) Explicit, compact and transparent expressions for the transport 
coefficients. We have also emphasized the similarity in structure of the 
results for continuous gases and lattice gases. In both cases transport 
coefficients are essentially given in terms of the same matrix elements of 
the inverse collision operator. The existing unwieldy expressions for the 
kinematic viscosity v for FCHC models in refs. 1 and 4 do not exhibit these 
similarities. The results for the bulk viscosity ( and for the staggered 
diffusivities D l  and Dll are new. 

(iv) We have further introduced for the FCHC models generalized 
hydrodynamics with wavenumber-dependent transport coefficients and 
relaxation times, which extends linear hydrodynamics to shorter wave- 
lengths. Such extensions are of interest for the study of spatial fluctuations 
and the dynamic structure function of cellular automata fluids. 

(v) To obtain these results we avoid the technicalities of multi-time- 
scale or Chapman-Enskog methods, and determine the wavenumber- 
dependent eigenvalues of the linearized Boltzmann equation with spatial 
dependence. This method is a well-known alternative for calculating 
transport coefficients in kinetic theory of continuous gases. 13~1 This paper 
also extends and generalizes the results of ref. 22 on eigenvalue spectra to 
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three- and four-dimensional lattice gases. The method is not suitable to 
derive the nonlinear terms in the Navier-Stokes equations. 

(vi) The lattice Boltzmann equation neglects dynamical correlation 
between velocities of particles on the same and on different sites. In case the 
semi-detailed-balance conditions are violated, computer simulations show 
that two-particle velocity distributions do not factorize in the equilibrium 
state, although the particles are point particles and possess only kinetic 
energy. 

(vii) The predictions of kinetic theory deviate from the predictions of 
the computer simulations for the speed of sound c~. (up to 3 %, well outside 
tile error bars) and for transport properties (up to 200%). These observa- 
tions are consistent with those in ref. 1. We have conjectured in Section 6 
that the ring kinetic equation will largely account for the deviations in the 
transport coefficients. 

(viii) We have also compared the simulated speed of sound with the 
predictions of linear response theory in Section 6.2. They show excellent 
agreement; those of kinetic theory disagree with the simulation results. All 
this illustrates indeed that very little is known, even about the equilibrium 
state, of models that violate the Stueckelberg condition (2.6). 

APPENDIX  A. COLLISION M A T R I X  Q 

In this appendix we discuss the linearized collision matrix I2 and 
calculate its eigenfunctions, as quoted in (3.7), and further properties 
required for the calculation of transport coefficients. We further show how 
the special symmetry (2.3) of the FCHC lattice guarantees that the 
viscosity tensor is isotropic. The matrix 12 is obtained by linearizing the 
collision term J ( f +  6f) in the small perturbations 6f around the spatially 
uniform equilibrium state, f = p/24, i.e., 

~ ( f +  6f(t)) = Z (2o3fj (t) + r 2) (A. I) 
J 

The result for single-speed FCHC models with [cjl = x/~ ( j =  1, 2 ..... b = 24) 
isO 8) 

~, j  = 5". (6s; - as,) A , , .Fo(s )  8sj 
s , s  

= -6ij+ Z 6s; A.,.,,Fo(s) 6S,. (A.2) 
s ' ,  .v 
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6Si = sj -- f and 

Fo(s) = (f),~.,l- 1(1 _ f)h-, , . , . i-  l (A.3) 

where p ( s ) = ~ i s i  is the number of particles in configuration {s(r)} at 
node r. 

In FCHC models without rest particles, the b x b collision matrix is 
symmetric, 

O~i = f2ii (A.4) 

on account of the following argument, which is independent of the validity 
of the Stueckelberg condition. Let p be a lattice isometry that interchanges 
ci and cj. Then lattice symmetries require" if s ~ s' with a certain proba- 
bility, then also p(s)---,p(s') with equal probability for every lattice 
isometry p, i.e., A.,..~, = Arls~p~.~, I. Next, we change in (A.2) to new summation 
variables s ~ p ( s )  and s '~p(s ' ) ,  and use (p(s))i=s i, and the symmetry 
(A.4) follows. 

The number of independent matrix elements of g2 can still be reduced 
further. A matrix element I2~i is a scalar function of the vectors ci and cj, 
which depends only on the scalar argument c~.ci  = 2~i. r = 2 cos ~b~j. 
As cos ~b,~ can only take values 0, +__ �89 + 1 according to Table I, there are 
only five independent matrix elements for general collision rules with 
FCHC symmetry. Finally, the conservation laws of mass and momentum 
give two more independent relations ' ~  f2ii=0 and Y~ c~f2~i=0 for all j. 
Consequently there are only three independent matrix elements and only 
three independent nonvanishing eigenvalues. 

Next we discuss models with additional rest particles, which may or 
may not follow the Fermi exclusion rule. Then one can show that f2~j is 
symmetric, using the weighted inner products of ref. 21, provided the 
Stueckelberg conditions (2.6) are satisfied. The proof is somewhat involved 
and will not be given here. If the conditions (2.6) are violated, the matrix 
I2 is not symmetric. 

We consider a model with r rest particles and b moving particles. The 
basis consists of r + b vectors, each with r +  b elements, and the collision 
operator is an (r + b)-dimensional matrix, where the first r entries refer to 
rest particles and the last b to moving particles. Although 12 is no longer 
symmetric, it still has the property that I2ij=s'2i~ for {i, j e m } ,  where m 
refers to moving particles, because of the arguments given below (A.4), 
Also, as all rest particles (r) are equivalent, one verifies that the block 
matrices I2~j=e, with {iem,  j e r } ,  and f2~i=E, with {ier ,  j e m } ,  are 
independent of their labels. Finally, the rest-rest block f2~ with {i, j e t }  
has only two different elements, I2~=eo and (2~i=e t, iv~j, for { / , je t '} ,  
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due to the equivalence of rest particles. The /2 matrix has four more 
elements (e, Co, et, g), which makes a total of nine independent elements. 
Conservation laws impose four independent restrictions, 

% +  ( r -  1)e L + b e = 0  

t '2q= ~ s  ( i e m )  (A.5) 
j e m  j e m  

%,f2 U = 0 
i E nt 

so there are only five nonvanishing eigenvalues. 
As the matrix s is nonsymmetric,  the right and left eigenvectors 

of O, denoted by Ot and U~, respectively, form a bior thonormal  set, i.e., 
( O i l  UJ> = Jl';50., where ~U,. is a normalization constant. We will use the 
notation Oi = ( ' "  II "") ,  where the components  on the left hand side of the 
vertical bars refer to rest particles and on the right to the moving particles. 

Straightforward calculation yields the ( r +  b)-dimensional eigenvectors 
{U,,, 0,,,} and eigenvalues ~o,,, as defined in (3.5): 

U t = ( 1  ..... 1111 ..... 1) ) 

0~ = (~/~ ..... ~/~ II 1 ..... 1)I (o91 =0) 

U z =  ( - b e / r g  ..... - b d r g  ll 1 ..... 1)] 
(m,_ = be + rg) 

02 = ( - b/r ..... - b/r I I 1 ..... 1 ) 

U 3 = 0 3 = ( 1 , - - 1 , 0  ..... 0110 ..... 0) "~ 
/ 

U 4 = U 4 = ( I , O  , - 1  ..... OllO ..... O) % (W3=/~I__/~O) 

[ 
U r + , = b , + , = ( 1 , 0  ..... 0, - 1 1 1 0  ..... 0 ) j  

u , + , , =  0r+,,  = (0 ..... 0 ]1U,,) ((O,,; n = 2,..., b) (A.6) 

where the relation (A.5) has been used. The b-vectors u,, and eigenvalues 
09,, (n = 1, 2 ..... b) are the same as those listed in (3.7). The eigenvalue w3 
is ( r -  1)-fold degenerate. 

If the model satisfies the Stueckelberg conditions (2.6), then s'2 is sym- 
metric and e = g .  Consequently U~ = 0~ and U2 = 02. It should also be 
noted that the matrix elements D,./in (A.2) for F C H C  models without rest 
particles depend only on the density through the reduced density f =  p/24. 
However, if rest particles are included, F o ( s ) i n  (A.3) should be replaced by 
Fo(s) /x j ,  where 

Fo(s) = f~,(s)( 1 - . f o ) ' -  p,(s) fp,,(.,)( 1 _ f ) r -  ~.~) (A.7) 
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Here fo and f are, respectively, the average occupation number of rest 
and moving particles with p = tfo + bf. Furthermore, p,(s) = 5Z~r s~ and 
p , , , ( s ) = ~  .... s~ are, respectively, the actual number of rest and moving 
particles at a node, and •i= fo(1 - f o )  if j E t  and ~j--.f(1 - f )  i f j ~ m .  For 
any given density p the stationary distribution fo or f must be determined 
by solving the nonlinear Boltzmann equation, ~ ( f ) = 0 .  Using that infor- 
mation as input one can calculate the matrix elements D u and eigenvalues 
co,, in (3.7) and (A.6) numerically. 

APPENDIX B. BULK VISCOSITY 

We calculate the bulk viscosity for a d-dimensional lattice gas with r 
rest particles and b moving particles with Ic;I =Co. In FCHC models 
co=,4/2, in FHP models co= 1. The derivation does not depend on the 
validity or violation of conditions (2.5) or (2.6) and closely parallels that 
in Section 4.2. However, one should distinguish between right and left 
eigenvectors. Solving the secular equation to C(ik) yields instead of (4.6) 

) ~_(~)~2=c; - ( c t l c l )  (B.1) 

where U~ and ~'j are defined in (A.6), and e and g in Appendix A, and c/ 
is an (r+b)-dimensional vector with components c , = 0  if [czl =0,  and 
c , =  f~.c~ if Ici[ = Co. In SDB models g=e. Consequently, the speed of 
sound, c.~=co[b/d(r+b)] ~/2, is a universal quantity, independent of the 
collision rules. However, in NSDB models the speed of sound in (B.1) 
depends on the details of the collision rules through the D-matrix elements 
e and g defined in Appendix A. Depending on the sign of the ratio g/e, the 
speed of sound can be larger or smaller than that of an SDB model. 

For the viscosity one finds the same expression as in (4.7). The 
expression for the sound damping constant is slightly modified, i.e., 

1 1 1 
r =  < d -  d u,I I d -  d D, >/{o, I o,} (B.2) 

With the help of (A.6) the vectors in the above matrix element can be 
decomposed into two eigenvectors of ~,  i.e., 

CT-c;U~= c7-~tc-  + c ~ - c  U~ (B.3) 
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and the same relation with U replaced by ~'. The first term corresponds to 
the eigenvalue 09, = 2 on account of (3.7), and the second one to o9, = to 2 = 
be + rg, on account of (A.6). Further  evaluation of (B.2) yields finally 

r =  v+~r 

c 2 (1 1) (_~ 2"~[1 1 ,  
(B.4) 

In a single-speed model, cs = Co/x//-d and the bulk viscosity vanishes. Also 
note that the transport  coefficients in (B.4) only depend on the number of 
rest particles through the speed of sound cs and the eigenvalue w2. 

APPENDIX C. STAGGERED DIFFUSIVITIES 

The existence of the staggered mode (2.9) implies that the Boltzmann 
equations (3.1) and (3.4) have an exact (undamped) solution with period 
T = 2 ,  i.e., 

(-I)~ O. c,.fi(r, t)= ~ O-c~f~(k = zoO, t) 
r , i  i 

= ( - 1 )' Ho = ei~'Ho (C.1) 

Here f~(k, t) is the Fourier  transform of the distribution function. 
Consequently Eq. (4.2) has at wavenumber k = rt0 an exact eigenfunction 
qJ(n0) = 0 . c  with eigenvalue 2 ( ~ 0 ) =  - 1  or z ( n 0 ) =  ~i, i.e., 

e- i"~  + O ) 0 .  c = ( - 1 )~  0- c = - 0 .  c (C.2) 

because all 0j satisfy the relation 0 .  ci = 0, + 1, as can be seen in Table I. 
For  wavenumbers close to nO there exists a staggered diffusive mode, 

~b0(k, c) = 0" c = Co 
(c.3) 

z0(k) = n i -  Do(k) Ik - n012 

with a slowly decaying amplitude Ao(fC)=expl-z0(k)], where Do(fQ is the 
staggered diffusivity. By perturbat ion expansion around (~o~ and 
z~O, hi, we obtain the result (4.10) for the anisotropic staggered diffusivity. 

n 

According to (4.11), it can be split into a longitudinal and a transverse 
part, (17'39) given by 

822/74/5-6-1! 
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1 1 +) 

+2 Ic~)/(co I co) DII = - ( c ~ l  .c2 + d(co) 
(C.4) 

1 1 
D I  = -<coc,J Q + zl(co) + 2 leoc,~)/<co I Co) 

where c , ~ , = e , ( 0 ) ' c  and {0, e , ( 0 ) ; c t =  1, 2, 3} form an or thogona l  set of 
unit vectors. 

To evaluate these expressions, we may choose 0 = ( 1 , 0 , 0 , 0 )  (see 
Table I), because all reciprocal lattice vectors are equivalent  and related by 
lattice symmetries.  Then c o c ~ ,  = c,.c,, is a c o m m o n  eigenfunction of t'2 and 
d(Co)  with eigenvalues - 2  and 0, respectively, and the transverse diffusion 
coefficient becomes D•  = v, as quoted in (4.11). To calculate DI~ we deduce 
from the symmetries  of-(2 and ,d(c,.) that 

[O  + A(c . , . ) ] - '  c '- , .=A + B c ~ .  (C.5) 

St ra ightforward calculat ion gives then A = 1/2 and B = - 2 / 2 .  Subst i tu t ion 
of (C.5) in (C.4) yields finally DII =6v ,  as quoted in (4.11). 
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